Nonparametric estimation of the tree structure of a nested Archimedean copula

نویسندگان

  • Johan Segers
  • Nathan Uyttendaele
چکیده

One of the features inherent in nested Archimedean copulas, also called hierarchical Archimedean copulas, is their rooted tree structure. In this paper, a nonparametric, rank-based method to estimate this structure is developed. Our approach consists in representing the rooted tree structure as a set of trivariate structures that can be estimated individually. Indeed, for any triple of variables there are only four possible rooted tree structures and, based on a sample, a choice can be made by performing comparisons between the three bivariate margins of the empirical distribution of the triple. The set of estimated trivariate structures can then be used to build an estimate of the global rooted tree structure. This approach has the advantage that no assumptions about the nested Archimedean copula is required prior to the estimation of its structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter Estimation of Some Archimedean Copulas Based on Minimum Cramér-von-Mises Distance

The purpose of this paper is to introduce a new estimation method for estimating the Archimedean copula dependence parameter in the non-parametric setting. The estimation of the dependence parameter has been selected as the value that minimizes the Cramér-von-Mises distance which measures the distance between Empirical Bernstein Kendall distribution function and true Kendall distribution functi...

متن کامل

Dependence Tree Structure Estimation via Copula

We propose an approach for dependence tree structure learning via copula. A nonparametric algorithm for copula estimation is presented. Then a Chow-Liu like method based on dependence measure via copula is proposed to estimate maximum spanning bivariate copula associated with bivariate dependence relations. The main advantage of the approach is that learning with empirical copula focuses on dep...

متن کامل

Efficiently sampling Archimedean copulas

Efficient sampling algorithms for both exchangeable and nested Archimedean copulas are presented. First, efficient sampling algorithms for the nested Archimedean families of Ali-Mikhail-Haq, Frank, and Joe are introduced. Second, a general strategy how to build a nested Archimedean copula from a given Archimedean generator is presented. Sampling this copula involves sampling an exponentiallytil...

متن کامل

Bivariate Archimedean Copula Models for Censored Data in Non-Life Insurance

We describe a methodology based on Archimedean copulas for analyzing nonlife insurance data with censoring present. Specifically, we propose a graphical selection procedure for the nonparametric estimation of the generator. An actual loss-ALAE data set is used for the numerical illustrations and for comparisons of our approach to a few others.

متن کامل

Sampling from Archimedean Copulas

We develop sampling algorithms for multivariate Archimedean copulas. For exchangeable copulas, where there is only one generating function, we first analyse the distribution of the copula itself, deriving a number of integral representations and a generating function representation. One of the integral representations is related, by a form of convolution, to the distribution whose Laplace trans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 72  شماره 

صفحات  -

تاریخ انتشار 2014